3.668 \(\int \frac{x^2}{(a+c x^4)^2} \, dx\)

Optimal. Leaf size=204 \[ \frac{\log \left (-\sqrt{2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt{a}+\sqrt{c} x^2\right )}{16 \sqrt{2} a^{5/4} c^{3/4}}-\frac{\log \left (\sqrt{2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt{a}+\sqrt{c} x^2\right )}{16 \sqrt{2} a^{5/4} c^{3/4}}-\frac{\tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{8 \sqrt{2} a^{5/4} c^{3/4}}+\frac{\tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{8 \sqrt{2} a^{5/4} c^{3/4}}+\frac{x^3}{4 a \left (a+c x^4\right )} \]

[Out]

x^3/(4*a*(a + c*x^4)) - ArcTan[1 - (Sqrt[2]*c^(1/4)*x)/a^(1/4)]/(8*Sqrt[2]*a^(5/4)*c^(3/4)) + ArcTan[1 + (Sqrt
[2]*c^(1/4)*x)/a^(1/4)]/(8*Sqrt[2]*a^(5/4)*c^(3/4)) + Log[Sqrt[a] - Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2]/(
16*Sqrt[2]*a^(5/4)*c^(3/4)) - Log[Sqrt[a] + Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2]/(16*Sqrt[2]*a^(5/4)*c^(3/
4))

________________________________________________________________________________________

Rubi [A]  time = 0.119539, antiderivative size = 204, normalized size of antiderivative = 1., number of steps used = 10, number of rules used = 7, integrand size = 13, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.538, Rules used = {290, 297, 1162, 617, 204, 1165, 628} \[ \frac{\log \left (-\sqrt{2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt{a}+\sqrt{c} x^2\right )}{16 \sqrt{2} a^{5/4} c^{3/4}}-\frac{\log \left (\sqrt{2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt{a}+\sqrt{c} x^2\right )}{16 \sqrt{2} a^{5/4} c^{3/4}}-\frac{\tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{8 \sqrt{2} a^{5/4} c^{3/4}}+\frac{\tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{8 \sqrt{2} a^{5/4} c^{3/4}}+\frac{x^3}{4 a \left (a+c x^4\right )} \]

Antiderivative was successfully verified.

[In]

Int[x^2/(a + c*x^4)^2,x]

[Out]

x^3/(4*a*(a + c*x^4)) - ArcTan[1 - (Sqrt[2]*c^(1/4)*x)/a^(1/4)]/(8*Sqrt[2]*a^(5/4)*c^(3/4)) + ArcTan[1 + (Sqrt
[2]*c^(1/4)*x)/a^(1/4)]/(8*Sqrt[2]*a^(5/4)*c^(3/4)) + Log[Sqrt[a] - Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2]/(
16*Sqrt[2]*a^(5/4)*c^(3/4)) - Log[Sqrt[a] + Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2]/(16*Sqrt[2]*a^(5/4)*c^(3/
4))

Rule 290

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(
a*c*n*(p + 1)), x] + Dist[(m + n*(p + 1) + 1)/(a*n*(p + 1)), Int[(c*x)^m*(a + b*x^n)^(p + 1), x], x] /; FreeQ[
{a, b, c, m}, x] && IGtQ[n, 0] && LtQ[p, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 297

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]},
Dist[1/(2*s), Int[(r + s*x^2)/(a + b*x^4), x], x] - Dist[1/(2*s), Int[(r - s*x^2)/(a + b*x^4), x], x]] /; Free
Q[{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ,
 b]]))

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{x^2}{\left (a+c x^4\right )^2} \, dx &=\frac{x^3}{4 a \left (a+c x^4\right )}+\frac{\int \frac{x^2}{a+c x^4} \, dx}{4 a}\\ &=\frac{x^3}{4 a \left (a+c x^4\right )}-\frac{\int \frac{\sqrt{a}-\sqrt{c} x^2}{a+c x^4} \, dx}{8 a \sqrt{c}}+\frac{\int \frac{\sqrt{a}+\sqrt{c} x^2}{a+c x^4} \, dx}{8 a \sqrt{c}}\\ &=\frac{x^3}{4 a \left (a+c x^4\right )}+\frac{\int \frac{1}{\frac{\sqrt{a}}{\sqrt{c}}-\frac{\sqrt{2} \sqrt [4]{a} x}{\sqrt [4]{c}}+x^2} \, dx}{16 a c}+\frac{\int \frac{1}{\frac{\sqrt{a}}{\sqrt{c}}+\frac{\sqrt{2} \sqrt [4]{a} x}{\sqrt [4]{c}}+x^2} \, dx}{16 a c}+\frac{\int \frac{\frac{\sqrt{2} \sqrt [4]{a}}{\sqrt [4]{c}}+2 x}{-\frac{\sqrt{a}}{\sqrt{c}}-\frac{\sqrt{2} \sqrt [4]{a} x}{\sqrt [4]{c}}-x^2} \, dx}{16 \sqrt{2} a^{5/4} c^{3/4}}+\frac{\int \frac{\frac{\sqrt{2} \sqrt [4]{a}}{\sqrt [4]{c}}-2 x}{-\frac{\sqrt{a}}{\sqrt{c}}+\frac{\sqrt{2} \sqrt [4]{a} x}{\sqrt [4]{c}}-x^2} \, dx}{16 \sqrt{2} a^{5/4} c^{3/4}}\\ &=\frac{x^3}{4 a \left (a+c x^4\right )}+\frac{\log \left (\sqrt{a}-\sqrt{2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt{c} x^2\right )}{16 \sqrt{2} a^{5/4} c^{3/4}}-\frac{\log \left (\sqrt{a}+\sqrt{2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt{c} x^2\right )}{16 \sqrt{2} a^{5/4} c^{3/4}}+\frac{\operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{8 \sqrt{2} a^{5/4} c^{3/4}}-\frac{\operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{8 \sqrt{2} a^{5/4} c^{3/4}}\\ &=\frac{x^3}{4 a \left (a+c x^4\right )}-\frac{\tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{8 \sqrt{2} a^{5/4} c^{3/4}}+\frac{\tan ^{-1}\left (1+\frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{8 \sqrt{2} a^{5/4} c^{3/4}}+\frac{\log \left (\sqrt{a}-\sqrt{2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt{c} x^2\right )}{16 \sqrt{2} a^{5/4} c^{3/4}}-\frac{\log \left (\sqrt{a}+\sqrt{2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt{c} x^2\right )}{16 \sqrt{2} a^{5/4} c^{3/4}}\\ \end{align*}

Mathematica [A]  time = 0.0983371, size = 184, normalized size = 0.9 \[ \frac{\frac{\sqrt{2} \log \left (-\sqrt{2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt{a}+\sqrt{c} x^2\right )}{c^{3/4}}-\frac{\sqrt{2} \log \left (\sqrt{2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt{a}+\sqrt{c} x^2\right )}{c^{3/4}}-\frac{2 \sqrt{2} \tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{c^{3/4}}+\frac{2 \sqrt{2} \tan ^{-1}\left (\frac{\sqrt{2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{c^{3/4}}+\frac{8 \sqrt [4]{a} x^3}{a+c x^4}}{32 a^{5/4}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^2/(a + c*x^4)^2,x]

[Out]

((8*a^(1/4)*x^3)/(a + c*x^4) - (2*Sqrt[2]*ArcTan[1 - (Sqrt[2]*c^(1/4)*x)/a^(1/4)])/c^(3/4) + (2*Sqrt[2]*ArcTan
[1 + (Sqrt[2]*c^(1/4)*x)/a^(1/4)])/c^(3/4) + (Sqrt[2]*Log[Sqrt[a] - Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2])/
c^(3/4) - (Sqrt[2]*Log[Sqrt[a] + Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2])/c^(3/4))/(32*a^(5/4))

________________________________________________________________________________________

Maple [A]  time = 0.003, size = 154, normalized size = 0.8 \begin{align*}{\frac{{x}^{3}}{4\,a \left ( c{x}^{4}+a \right ) }}+{\frac{\sqrt{2}}{32\,ac}\ln \left ({ \left ({x}^{2}-\sqrt [4]{{\frac{a}{c}}}x\sqrt{2}+\sqrt{{\frac{a}{c}}} \right ) \left ({x}^{2}+\sqrt [4]{{\frac{a}{c}}}x\sqrt{2}+\sqrt{{\frac{a}{c}}} \right ) ^{-1}} \right ){\frac{1}{\sqrt [4]{{\frac{a}{c}}}}}}+{\frac{\sqrt{2}}{16\,ac}\arctan \left ({x\sqrt{2}{\frac{1}{\sqrt [4]{{\frac{a}{c}}}}}}+1 \right ){\frac{1}{\sqrt [4]{{\frac{a}{c}}}}}}+{\frac{\sqrt{2}}{16\,ac}\arctan \left ({x\sqrt{2}{\frac{1}{\sqrt [4]{{\frac{a}{c}}}}}}-1 \right ){\frac{1}{\sqrt [4]{{\frac{a}{c}}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(c*x^4+a)^2,x)

[Out]

1/4*x^3/a/(c*x^4+a)+1/32/a/c/(a/c)^(1/4)*2^(1/2)*ln((x^2-(a/c)^(1/4)*x*2^(1/2)+(a/c)^(1/2))/(x^2+(a/c)^(1/4)*x
*2^(1/2)+(a/c)^(1/2)))+1/16/a/c/(a/c)^(1/4)*2^(1/2)*arctan(2^(1/2)/(a/c)^(1/4)*x+1)+1/16/a/c/(a/c)^(1/4)*2^(1/
2)*arctan(2^(1/2)/(a/c)^(1/4)*x-1)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(c*x^4+a)^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.96515, size = 441, normalized size = 2.16 \begin{align*} \frac{4 \, x^{3} - 4 \,{\left (a c x^{4} + a^{2}\right )} \left (-\frac{1}{a^{5} c^{3}}\right )^{\frac{1}{4}} \arctan \left (-a c x \left (-\frac{1}{a^{5} c^{3}}\right )^{\frac{1}{4}} + \sqrt{-a^{3} c \sqrt{-\frac{1}{a^{5} c^{3}}} + x^{2}} a c \left (-\frac{1}{a^{5} c^{3}}\right )^{\frac{1}{4}}\right ) +{\left (a c x^{4} + a^{2}\right )} \left (-\frac{1}{a^{5} c^{3}}\right )^{\frac{1}{4}} \log \left (a^{4} c^{2} \left (-\frac{1}{a^{5} c^{3}}\right )^{\frac{3}{4}} + x\right ) -{\left (a c x^{4} + a^{2}\right )} \left (-\frac{1}{a^{5} c^{3}}\right )^{\frac{1}{4}} \log \left (-a^{4} c^{2} \left (-\frac{1}{a^{5} c^{3}}\right )^{\frac{3}{4}} + x\right )}{16 \,{\left (a c x^{4} + a^{2}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(c*x^4+a)^2,x, algorithm="fricas")

[Out]

1/16*(4*x^3 - 4*(a*c*x^4 + a^2)*(-1/(a^5*c^3))^(1/4)*arctan(-a*c*x*(-1/(a^5*c^3))^(1/4) + sqrt(-a^3*c*sqrt(-1/
(a^5*c^3)) + x^2)*a*c*(-1/(a^5*c^3))^(1/4)) + (a*c*x^4 + a^2)*(-1/(a^5*c^3))^(1/4)*log(a^4*c^2*(-1/(a^5*c^3))^
(3/4) + x) - (a*c*x^4 + a^2)*(-1/(a^5*c^3))^(1/4)*log(-a^4*c^2*(-1/(a^5*c^3))^(3/4) + x))/(a*c*x^4 + a^2)

________________________________________________________________________________________

Sympy [A]  time = 0.654603, size = 46, normalized size = 0.23 \begin{align*} \frac{x^{3}}{4 a^{2} + 4 a c x^{4}} + \operatorname{RootSum}{\left (65536 t^{4} a^{5} c^{3} + 1, \left ( t \mapsto t \log{\left (4096 t^{3} a^{4} c^{2} + x \right )} \right )\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/(c*x**4+a)**2,x)

[Out]

x**3/(4*a**2 + 4*a*c*x**4) + RootSum(65536*_t**4*a**5*c**3 + 1, Lambda(_t, _t*log(4096*_t**3*a**4*c**2 + x)))

________________________________________________________________________________________

Giac [A]  time = 1.13392, size = 265, normalized size = 1.3 \begin{align*} \frac{x^{3}}{4 \,{\left (c x^{4} + a\right )} a} + \frac{\sqrt{2} \left (a c^{3}\right )^{\frac{3}{4}} \arctan \left (\frac{\sqrt{2}{\left (2 \, x + \sqrt{2} \left (\frac{a}{c}\right )^{\frac{1}{4}}\right )}}{2 \, \left (\frac{a}{c}\right )^{\frac{1}{4}}}\right )}{16 \, a^{2} c^{3}} + \frac{\sqrt{2} \left (a c^{3}\right )^{\frac{3}{4}} \arctan \left (\frac{\sqrt{2}{\left (2 \, x - \sqrt{2} \left (\frac{a}{c}\right )^{\frac{1}{4}}\right )}}{2 \, \left (\frac{a}{c}\right )^{\frac{1}{4}}}\right )}{16 \, a^{2} c^{3}} - \frac{\sqrt{2} \left (a c^{3}\right )^{\frac{3}{4}} \log \left (x^{2} + \sqrt{2} x \left (\frac{a}{c}\right )^{\frac{1}{4}} + \sqrt{\frac{a}{c}}\right )}{32 \, a^{2} c^{3}} + \frac{\sqrt{2} \left (a c^{3}\right )^{\frac{3}{4}} \log \left (x^{2} - \sqrt{2} x \left (\frac{a}{c}\right )^{\frac{1}{4}} + \sqrt{\frac{a}{c}}\right )}{32 \, a^{2} c^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(c*x^4+a)^2,x, algorithm="giac")

[Out]

1/4*x^3/((c*x^4 + a)*a) + 1/16*sqrt(2)*(a*c^3)^(3/4)*arctan(1/2*sqrt(2)*(2*x + sqrt(2)*(a/c)^(1/4))/(a/c)^(1/4
))/(a^2*c^3) + 1/16*sqrt(2)*(a*c^3)^(3/4)*arctan(1/2*sqrt(2)*(2*x - sqrt(2)*(a/c)^(1/4))/(a/c)^(1/4))/(a^2*c^3
) - 1/32*sqrt(2)*(a*c^3)^(3/4)*log(x^2 + sqrt(2)*x*(a/c)^(1/4) + sqrt(a/c))/(a^2*c^3) + 1/32*sqrt(2)*(a*c^3)^(
3/4)*log(x^2 - sqrt(2)*x*(a/c)^(1/4) + sqrt(a/c))/(a^2*c^3)